LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - STATISTICS

THIRD SEMESTER - APRIL 2023
PST 3601 - ADVANCED OPERATIONS RESEARCH

Date: 08-05-2023
Time: 01:00 PM - 04:00 PM \qquad Max. : 100 Marks

SECTION A

Answer ALL questions. Each carries two marks.
$(10 \times 2=20)$

1. Define a Generalized Linear Programming Problem.
2. What is the need for integer programming?
3. Define Pure integer programming problem.
4. Show that dual of dual is primal for the following LPP; Maximize $Z=2 X_{1}+X_{2}$, subject to the constraints, $\mathrm{X}_{1}+2 \mathrm{X}_{2} \leq 10 ; \mathrm{X}_{1}+\mathrm{X}_{2} \leq 6$; and $\mathrm{X}_{1}, \mathrm{X}_{2} \geq 0$.
5. What is the basic principle used in Dynamic Programming?
6. Define Non Linear Programming Problem.
7. Give the mathematical representation of a QPP.
8. When do we say that a function is convex or concave?
9. What is scientific inventory management?
10. What do you mean by jockeying in a queue?

SECTION B

Answer any FIVE questions. Each carries eight marks.
11. Use Two-phase simplex method to solve the following LPP, Maximize $Z=4 x+5 y$ subject to $2 x+3 y \leq 6,3 x+y \geq 3, x, y \geq 0$.
12. Describe the Gomory's constraint method, and derive Gomory's constraint for solving a Pure Integer Programming Problem.
13. Solve the NLPP, $z=4 x_{1}+8 x_{2}-x_{1}{ }^{2}-x_{2}{ }^{2}, z=4 x_{1}+8 x_{2}-x_{1}^{2}-x_{2}^{2}$ subjected to $x_{1}+x_{2}=4, x_{1}$, $\mathrm{x}_{2} \geq 0$.
14. Solve the following mixed integer programming problems using Gomory's cutting plane method by using the initial solution given below; Maximize $\mathrm{z}=\mathrm{x}_{1}+\mathrm{x}_{2}$ subject to constraints $3 \mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 5, \mathrm{x}_{2}$ $\leq 2, \mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$ and x_{1} is integer.

Introducing slack variables and using simplex method, a non-integer optimum solution is given below;

C	X_{B}	X_{0}	X_{1}	X_{2}	X_{3}	X_{4}
1	X_{1}	$1 / 3$	1	0	$1 / 3$	$-2 / 3$
1	X_{2}	2	0	1	0	1
	$\mathrm{Z}-\mathrm{C}$	$7 / 3$	0	0	$1 / 3$	$1 / 3$

Find an OBFS to the above problem.
15. Write the necessary conditions to solve the following Quadratic programming Problem, Min $Z=X_{1}$ $-3 X_{2}-5 X_{3}+2 X_{1} X_{2}+2 X_{2} X_{3}+2 X_{1}{ }^{2}+2 X_{2}{ }^{2}+3 X_{3}{ }^{2}$ subject to the constraints, $X_{1}+X_{2}+X_{3}$ $\leq 1 ; 3 \mathrm{X}_{1}+2 \mathrm{X}_{2}+\mathrm{X}_{3} \leq 6$; and $X_{1}, X_{2}, X_{3} \geq 0$.
16. Explain the characteristics and the algorithm of solving a Dynamic Programming Problem.
17. Describe the components of an inventory model.
18. Explain the elements of a queuing system.

SECTION C

Answer any TWO questions. Each carries twenty marks.
19. Find an optimum integer solution for the following LPP: Max $Z=X_{1}+2 X_{2}$, subject to the constraints, $\mathrm{X}_{1}+\mathrm{X}_{2} \leq 7 ; 2 \mathrm{X}_{1} \leq 11 ; 2 \mathrm{X}_{2} \leq 7$ and $\mathrm{X}_{1}, \mathrm{X}_{2}$ are non-negative integers.
20. Solve the following Non Linear Programming Problem: $\operatorname{Max} Z=2 X_{1}-X_{1}^{2}+X_{2}$ subject to the constraints, $2 \mathrm{X}_{1}+3 \mathrm{X}_{2} \leq 6 ; 2 \mathrm{X}_{1}+\mathrm{X}_{2} \leq 4 ;$ and $\mathrm{X}_{1}, \mathrm{X}_{2} \geq 0$.
21. Derive the Khun-Tucker Necessary conditions for solving a Generalized Non-Linear Programming Problem for solving a Maximization/Minimization (both cases) objective function with one constraint.
22. For a (M/M/1) : ($\infty /$ FIFO) queuing model in the steady-state case, derive the steady state difference equations and obtain expressions for the mean and variance of queue length in terms of the parameters λ and μ.

