LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – **STATISTICS**

THIRD SEMESTER - APRIL 2023

PST 3601 – ADVANCED OPERATIONS RESEARCH

Dept. No. Date: 08-05-2023 Time: 01:00 PM - 04:00 PM

SECTION A

Answer ALL questions. Each carries two marks.

- 1. Define a Generalized Linear Programming Problem.
- 2. What is the need for integer programming?
- 3. Define Pure integer programming problem.
- 4. Show that dual of dual is primal for the following LPP; Maximize $Z = 2 X_1 + X_2$, subject to the constraints, $X_1 + 2 X_2 \le 10$; $X_1 + X_2 \le 6$; and $X_1, X_2 \ge 0$.
- 5. What is the basic principle used in Dynamic Programming?
- 6. Define Non Linear Programming Problem.
- 7. Give the mathematical representation of a QPP.
- 8. When do we say that a function is convex or concave?
- What is scientific inventory management? 9.
- 10. What do you mean by jockeying in a queue?

SECTION B

Answer any FIVE questions. Each carries eight marks.

- 11. Use Two-phase simplex method to solve the following LPP, Maximize Z = 4 x + 5 ysubject to $2 x + 3 y \le 6$, $3 x + y \ge 3$, $x, y \ge 0$.
- 12. Describe the Gomory's constraint method, and derive Gomory's constraint for solving a Pure Integer Programming Problem.
- **13.** Solve the NLPP, $z = 4 x_1 + 8 x_2 x_1^2 x_2^2$, $z = 4 x_1 + 8 x_2 x_1^2 x_2^2$ subjected to $x_1 + x_2 = 4, x_1$, $\mathbf{x}_2 \geq \mathbf{0}$.
- 14. Solve the following mixed integer programming problems using Gomory's cutting plane method by using the initial solution given below; Maximize $z = x_1 + x_2$ subject to constraints $3x_1 + 2x_2 \le 5$, x_2 $\leq 2, x_1, x_2 \geq 0$ and x_1 is integer.

Introducing slack variables and using simplex method, a non-integer optimum solution is given below;

С	X_B	\mathbf{X}_{0}	\mathbf{X}_{1}	X_2	X_3	X_4
1	\mathbf{X}_1	1/3	1	0	1/3	-2/3
1	X_2	2	0	1	0	1
	Z-C	7/3	0	0	1/3	1/3

Find an OBFS to the above problem.

$(5 \times 8 = 40)$

 $(10 \times 2 = 20)$

Max.: 100 Marks

- 15. Write the necessary conditions to solve the following Quadratic programming Problem, Min Z = X_1 - 3 X_2 - 5 X_3 + 2 $X_1 X_2$ + 2 $X_2 X_3$ + 2 X_1^2 + 2 X_2^2 + 3 X_3^2 subject to the constraints, $X_1 + X_2 + X_3 \le 1$; 3 X_1 + 2 X_2 + $X_3 \le 6$; and $X_1, X_2, X_3 \ge 0$.
- 16. Explain the characteristics and the algorithm of solving a Dynamic Programming Problem.
- 17. Describe the components of an inventory model.
- 18. Explain the elements of a queuing system.

SECTION C

Answer any TWO questions. Each carries twenty marks. (2 x 20 = 40)

- **19.** Find an optimum integer solution for the following LPP: Max $Z = X_1 + 2 X_2$, subject to the constraints, $X_1 + X_2 \le 7$; $2 X_1 \le 11$; $2 X_2 \le 7$ and X_1 , X_2 are non-negative integers.
- **20.** Solve the following Non Linear Programming Problem: Max $Z = 2 X_1 X_1^2 + X_2$ subject to the constraints, $2 X_1 + 3 X_2 \le 6$; $2 X_1 + X_2 \le 4$; and $X_1, X_2 \ge 0$.
- 21. Derive the Khun-Tucker Necessary conditions for solving a Generalized Non-Linear Programming Problem for solving a Maximization/Minimization (both cases) objective function with one constraint.
- 22. For a (M/M/1) : (∞/FIFO) queuing model in the steady-state case, derive the steady state difference equations and obtain expressions for the mean and variance of queue length in terms of the parameters λ and μ.

\$\$\$\$\$\$\$